12
« on: October 19, 2016, 11:11:10 PM »
Before we begin, we need one result: $\int x^2e^{-x^2/2}\,dx$. Changing variables, this can be written as
$$-\int x\,d(e^{-x^2/2})$$
Now integrate by parts, set $u=x$, $du=dx$, $dv=d(e^{-x^2/2})$, $v=e^{-x^2/2}$, we obtain
$$-xe^{-x^2/2}+\int e^{-x^2/2}\,dx$$
Now we begin the problem.
By D'Alembert's formula and Duhamel integral, the solution is
$$u(x,t)=\frac{1}{2}\left(-e^{(x-t)^2/2}-e^{(x+t)^2/2}\right)+\frac{1}{2}\int_0^t\int_{x-(t-t')}^{x+(t-t')} x'^2e^{-x'^2/2}-e^{-x'^2/2}\,dx'dt'$$
Now consider the inside integral
$$\int_{x-(t-t')}^{x+(t-t')} x'^2e^{-x'^2/2}-e^{-x'^2/2}\,dx'\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(*)$$
Let $a=x-(t-t')$ and $b=x+(t-t')$ for notational simplicity.
Using the result above, the first term can be integrated:
$$\int_{a}^{b} x'^2e^{-x'^2/2}\,dx'=ae^{-a^2/2}-be^{-b^2/2}+\int_a^b e^{-x'^2/2}\,dx'$$
But note that the second integral here cancels with the integral of the second term in $(*)$. So we just have
$$\int_a^b x'^2e^{-x'^2/2}-e^{-x'^2/2}\,dx'=ae^{-a^2/2}-be^{-b^2/2}$$
Now we need to integrate this with respect to $t'$, from $0$ to $t$. Consider the first term first. Note that $da=dt'$. When $t'=0$, $a=x-t$, When $t'=t$, $a=x$. Thus the first term integrates
$$\int_{x-t}^x ae^{-a^2/2}\,da=e^{-(x-t)^2/2}-e^{-x^2/2}$$
Now for the second term, note that $db=-dt'$. When $t'=0$, $b=x+t$. When $t'=t$, $b=x$. Thus we have
$$-\int_{x+t}^x be^{-b^2/2}\,db=e^{-x^2/2}-e^{-(x+t)^2/2}$$
Now putting together all the results:
$$u(x,t)=\frac{1}{2}\left(-e^{(x-t)^2/2}-e^{(x+t)^2/2}\right)+\frac{1}{2}\left(e^{-(x-t)^2/2}-e^{-x^2/2}-e^{-x^2/2}+e^{-(x+t)^2/2}\right) =-e^{-x^2/2}$$
Since this does not depend on $t$, we have $\lim_{t\to\infty} u(x,t)=-e^{-x^2/2}$.