Indeed, occasionally (remnant of the previous version) misleading "use separation of variables" appeared. Because everybody followed and none got a correct solution, this problem was removed and FE was normalized 90->40.
There is a correct solution:
Solution is spherically symmetric because the problem is. Then
\begin{equation}
u_{tt}- \bigl(u_{rr}+\frac{2}{r}u_r\bigr)=0\qquad r>0, t>0.
\label{6-4A}
\end{equation}
Multiplying by $r$ and using (\ref{6-3}) we arrive to the first equation below:
\begin{align}
&v_{tt}-v_{rr}=0\qquad r>0,\label{6-5}\\
&v(0,t)=0,
\label{6-6}\\
&v(r,0)=g(r)=\left\{\begin{aligned} &r
\quad &&r<1,\\
&0 &&r\ge 1,\end{aligned}\right. && v_t(r,0)=0.
\label{6-7}
\end{align}
Continuing $g(r)$ as and odd function $\tilde{g}(r)=\left\{\begin{aligned} &r
\quad &&|r|<1,\\
&0 &&|r|\ge 1,\end{aligned}\right.$ and solving Cauchy problem we get
\begin{equation}
v(r,t)=\frac{1}{2}\bigl( \tilde{g}(r+t)+\tilde{g}(r-t)\bigr)=\left\{\begin{aligned}
&0 &&r>t+1,\\
&\frac{1}{2}(r-t) \qquad&&1-t<r<t+1,\\
&r &&0<r<1-t,\\
&0 && 0< r<t-1
\end{aligned}\right.
\end{equation}
and finally
\begin{equation}
u(r,t)=r^{-1}v(r,t)=\left\{\begin{aligned}
&0 &&r>t+1,\\
&\frac{1}{2r}(r-t) \qquad&&1-t<r<t+1,\\
&1 &&0<r<1-t,\\
&0 && 0< r<t-1
\end{aligned}\right.
\end{equation}