Solve using (partial) Fourier transform with respect to $y$
\begin{align}
&\Delta u:=u_{xx}+u_{yy}=0, &&x>0,\label{7-1}\\
&u|_{x=0}= g(y),\label{7-2}\\
&\max |u|<\infty\label{7-3}
\end{align}
with $g(y)=\frac{2}{y^2+1}$.
Hint. Fourier transform of $g(y)$ is $\hat{g}=e^{-|\eta|}$.