Yes thanks. I modify my solution to solve for the sector instead of the half disk
\begin{equation}
\Delta =\partial_r^2 + \frac{1}{r}\partial_r +
\frac{1}{r^2}\partial_\theta^2
\end{equation}
Let's plug in $u = R(r)P(\theta) $ and I get
\begin{equation*}
R''(r)P(\theta) + \frac{1}{r}R' (r)P(\theta) + \frac{1}{r^2} R(r) P''(\theta)=0
\end{equation*}
which could be rewritten as
\begin{equation*}
\frac{r^2 R''(\rho) + r R' (r)}{R(r)}+
\frac{P''(\theta)}{P(\theta)}=0
\end{equation*}
The two terms must be constant
\begin{align}
&r^2 R'' +r R' = \lambda R\\[3pt]
&P(\theta)=-\lambda P(\theta).
\end{align}
The initial conditions can be translated as
\begin{align}
& u =1\qquad &&\text{for } r = 4,\\
& u=0 &&\text{for } \theta = -\frac{5\pi}{6}, \frac{5\pi}{6} \end{align}
Therefore the boundary condition for P is $P(-\frac{5\pi}{6}) = P(\frac{5\pi}{6}) = 0$ and this is a Dirichlet-Dirichlet boundary problem with $l = \frac{5\pi}{3}$.
Thus we have
\begin{align}
&\lambda_{n} = (\frac{3n}{5})^2
&P_{n} = \sin(\frac{3n}{5}(\theta + \frac{5\pi}{6}))
&& n = 1, 2, ...
\end{align}
\begin{equation}
r^2 R'' +r R' - (\frac{3n}{5})^2 R = 0
\end{equation}
The Euler equation for this is $k(k-1) + k - (\frac{3n}{5})^2 = 0$ and we have $ k = \frac{3n}{5}, -\frac{3n}{5}$
Since we are looking for continuous solutions,
\begin{equation}
R_n = A_n r^{\frac{3n}{5}}\\
u = \sum_{n = 1}^{\infty}A_n r^\frac{3n}{5} \sin(\frac{3n}{5}(\theta + \frac{5\pi}{6}))
\end{equation}
Apply the initial condition
\begin{equation}
\sum_{n = 1}^{\infty}A_n 4^\frac{3n}{5} \sin(n(\theta + \frac{5\pi}{6})) = 1
\end{equation}
Then we calculate the coefficients by
\begin{equation}
A_n=\frac{2}{4^\frac{3n}{5}\frac{5\pi}{3}}\int_{-\frac{5\pi}{6}}^{\frac{5\pi}{6}}\sin(\frac{3n}{5}(\theta+\frac{5\pi}{6}))\,d\theta=\frac{2}{4^\frac{3n}{5} \frac{5\pi}{3}}\int_0^{\frac{5\pi}{3}}\sin(\frac{3n}{5}x) \,dx=\frac{2}{4^\frac{3n}{5}\frac{5\pi}{3}\frac{3n}{5}}(\cos(\frac{3n}{5}x)|_{\frac{5\pi}{3}}^0)=\frac{1}{4^{\frac{3n}{5}-1}\frac{3\pi}{5} \frac{3n}{5}}\,\,\,\text{n odd, 0 otherwise}
\end{equation}
Therefore
\begin{equation}
u = \sum_{n = 1\,\,n\,\text odd}^{\infty} \frac{1}{4^{\frac{3n}{5}-1}\frac{3\pi}{5} \frac{3n}{5}}r^{\frac{3n}{5}} \sin(n(\theta + \frac{5\pi}{6})) = \sum_{n = 1\,\,n\,\text odd}^{\infty} \frac{100}{9n\pi4^{\frac{3n}{5}}} r^{\frac{3n}{5}} \sin(n(\theta + \frac{5\pi}{6}))
\end{equation}