Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
APM346-2016F
»
APM346--Lectures
»
Chapter 2
»
energy integrals
« previous
next »
Print
Pages: [
1
]
Author
Topic: energy integrals (Read 3652 times)
Shaghayegh A
Full Member
Posts: 21
Karma: 0
energy integrals
«
on:
December 10, 2016, 06:49:42 PM »
Problem 4 of the 2012 final exam:
http://forum.math.toronto.edu/index.php?topic=177.0
It asks to prove that the total energy (kinetic + potential) is constant with time. I get up to $$\frac{d}{dt} k(t) + p(t) = u_x(\infty) u_t(\infty) - u_x(-\infty) u_t(-\infty) $$ How do I prove $$u_x(\infty) u_t(\infty) - u_x(-\infty) u_t(-\infty) = 0 $$ using the boundary conditions? right now I know $u_t =0$
only
when t = 0 (and x is large)
Logged
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Re: energy integrals
«
Reply #1 on:
December 11, 2016, 08:31:26 AM »
Take values at infinity equal 0 (we assume that solution decays there)
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
APM346-2016F
»
APM346--Lectures
»
Chapter 2
»
energy integrals