Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
APM346-2016F
»
APM346--Lectures
»
Chapter 4
»
HA 6, problem 3c (sections 4.1 and 4.2)
« previous
next »
Print
Pages: [
1
]
Author
Topic: HA 6, problem 3c (sections 4.1 and 4.2) (Read 3269 times)
Shaghayegh A
Full Member
Posts: 21
Karma: 0
HA 6, problem 3c (sections 4.1 and 4.2)
«
on:
November 14, 2016, 02:09:32 PM »
http://www.math.toronto.edu/courses/apm346h1/20169/PDE-textbook/Chapter4/S4.2.P.html#mjx-eqn-a
For 3c: I assume that M(y) and N(y) are two arbitrary eigenfunctions with the same eigenvalues $\omega$. Then, M and N satisfy
$$Y^{(4)} (y)=\omega^4 Y(y) \\
Y(-L)=Y_y (-L)=0 \\
Y(L)=Y_y(L)=0
$$ where I've switched coordinate systems so that $y=x-l/2=x-L$. I want to prove
$$\int_{-L}^{L} M(y) N(y) dy=0$$ but I'm not sure how to do that. Any advise?
Thank you
Logged
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Re: HA 6, problem 3c (sections 4.1 and 4.2)
«
Reply #1 on:
November 15, 2016, 07:01:18 AM »
Different eigenvalues. For the same eigenvalue it will be plain wrong
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
APM346-2016F
»
APM346--Lectures
»
Chapter 4
»
HA 6, problem 3c (sections 4.1 and 4.2)