a) Characteristic Equation
\begin{equation} \frac{dt}{1} = \frac{dx}{xt} = \frac{du}{-u} \end{equation}
From $ \frac{dt}{1} = \frac{dx}{xt} $, $\frac{t^2}{2} + \ln c = \ln x$, thus $ x = ce^\frac{t^2}{2}$
b) General Solution
From $ \frac{dt}{1} = \frac{du}{-u}$, $-t + \ln k = \ln u$
So $u = ke^{-t} = \phi(xe^{\frac{-t^2}{2}})e^{-t} $
c) Since $u|_{t=0} = \frac{1}{1+x^2}$,
$\phi(x) = \frac{1}{1+x^2} $
Therefore, \begin{equation} u(x,t) = \frac{1}{1+x^2e^{-t^2}}e^{-t}\end{equation}