Use $G_D(x-y, t) - G_D(x+y,t)$:
\begin{equation}
G_D(x-y, t) - G_D(x+y,t) = \frac{1}{\sqrt{4\pi t}}e^{\frac{-(x-y)^2}{4t}} - \frac{1}{\sqrt{4\pi t}}e^{\frac{-(x+y)^2}{4t}}
\end{equation}
Now integrate them from 0 to infinity over y:
\begin{equation}
\frac{1}{\sqrt{4\pi t}}\int^{\infty}_0 e^{\frac{-(x-y)^2}{4t}} dy - \frac{1}{\sqrt{4\pi t}}\int^{\infty}_0 e^{\frac{-(x+y)^2}{4t}} dy
\end{equation}
Change variables to $z_1$ and $z_2$:
$z_1 = \frac{x-y}{2\sqrt{t}}$ , $dz_1 = \frac{-1}{2\sqrt{t}}dy$,
$z_2 = \frac{x+y}{2\sqrt{t}}$ , $dz_2 = \frac{1}{2\sqrt{t}}dy$,
\begin{equation}
-\frac{1}{\sqrt{\pi}}\int^{\infty}_{\frac{x}{2\sqrt{t}}} e^{-(z_1)^2} dz_1 - \frac{1}{\sqrt{\pi}}\int^{\infty}_{\frac{x}{2\sqrt{t}}} e^{-(z_2)^2} dz_2
\end{equation}
\begin{equation}
u(x,t) = xerf(\frac{x}{2\sqrt{t}}) + 2\sqrt{\frac{t}{\pi}}e^{-\frac{x^2}{4t}}
\end{equation}