For part (a), by inverse Fourier transform we get $$ \int_{-\infty}^{\infty} \hat{f}(\omega)e^{i\omega x} d\omega = f(x)\\\int_{-\infty}^{\infty} e^{-\alpha |\omega|}e^{i\omega x } d\omega = \frac{2\alpha}{\alpha^2 + x^2}\\2\alpha[\frac{1}{2\pi}\int_{-\infty}^{\infty} \frac{1}{\alpha^2 + x^2}e^{-i\omega x} dx] = e^{-\alpha |\omega|}\\\hat{f}(
\omega) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \frac{1}{\alpha^2 + x^2}e^{-i\omega x} dx = \frac{1}{2\alpha}e^{-\alpha|\omega|}$$
For part (b), let $g(x) = xf(x) = \frac{x}{(x^2+\alpha^2)}$, where $f(x)$ is defined in part (a).
Then, $$\hat{g}(\omega) = i\hat{f'}(\omega) = \frac{-i\omega e^{-\alpha |\omega|}}{2|\omega|}\ ( |\omega|' = \frac{\omega}{|\omega|})$$
For part (c), is similar to problem 2, for $g(x) = f(x)\cos(\beta x)$, where $f(x)$ is defined in part (a). $\hat{g}(\omega) = \frac{1}{2}[\hat{f}(\omega - \beta) + \hat{f}(\omega + \beta)]$ $$=\frac{1}{4\alpha}[e^{-\alpha |\omega - \beta|}+e^{-\alpha |\omega + \beta|}]$$
for $g(x) = f(x)\sin(\beta x), \hat{g}(\omega) = \frac{1}{2i}[\hat{f}(\omega - \beta) - \hat{f}(\omega + \beta)]$
$$=\frac{1}{4i\alpha}[e^{-\alpha |\omega - \beta|}-e^{-\alpha |\omega + \beta|}]$$
For part (d), let $f(x) = \frac{\cos(\beta x)}{(\alpha^2 + x^2)}, g(x) = xf(x), \hat{g}(\omega) = i\hat{f'}(\omega)$ $$\hat{f}(\omega) = \frac{1}{4\alpha}[e^{-\alpha |\omega - \beta|}+e^{-\alpha |\omega + \beta|}]\\\hat{f'}(\omega) = -\frac{1}{4}[\frac{\omega - \beta}{|\omega-\beta|}e^{-\alpha|\omega-\beta|}+\frac{\omega + \beta}{|\omega+\beta|}e^{-\alpha|\omega+\beta|}]\\\hat{g}(\omega) = -\frac{i}{4}[\frac{\omega - \beta}{|\omega-\beta|}e^{-\alpha|\omega-\beta|}+\frac{\omega + \beta}{|\omega+\beta|}e^{-\alpha|\omega+\beta|}]$$
Similarly, let $f(x) = \frac{\sin(\beta x )}{(\alpha^2 + x^2)}, g(x) = xf(x), \hat{g}(\omega) = i\hat{f'}(\omega)$ $$\hat{f}(\omega) = \frac{1}{4i\alpha}[e^{-\alpha |\omega - \beta|}-e^{-\alpha |\omega + \beta|}]\\\hat{f'}(\omega) = -\frac{1}{4i}[\frac{\omega - \beta}{|\omega-\beta|}e^{-\alpha|\omega-\beta|}-\frac{\omega + \beta}{|\omega+\beta|}e^{-\alpha|\omega+\beta|}]\\\hat{g}(\omega) = -\frac{1}{4}[\frac{\omega - \beta}{|\omega-\beta|}e^{-\alpha|\omega-\beta|}-\frac{\omega + \beta}{|\omega+\beta|}e^{-\alpha|\omega+\beta|}]$$