a)
\begin{equation} \frac{\partial E(t)}{\partial t} = \int_0^\infty (u_tu_{tt} +c^2u_xu_{xt}) dx + au(0)u_t(0) \end{equation}
\begin{equation} \frac{\partial E(t)}{\partial t} = \int_0^\infty (c^2u_tu_{xx} +c^2u_xu_{xt}) dx + au(0)u_t(0) \end{equation}
\begin{equation} \frac{\partial E(t)}{\partial t} = c^2\int_0^\infty (u_tu_x)_x dx + au(0)u_t(0) \end{equation}
\begin{equation} \frac{\partial E(t)}{\partial t} = u_t(au - c^2u_x)|_{x=0} \end{equation}
We need
\begin{equation} \frac{\alpha_1}{\alpha_0} = \frac{a}{-c^2} \ \ \ \rightarrow \ \ \ a = - \frac{\alpha_1}{\alpha_0}c^2 \end{equation}
b)
\begin{equation} \frac{\partial E(t)}{\partial t} = \int_0^l (u_tu_{tt} +c^2u_xu_{xt}) dx + auu_t|_{x=0} + buu_t|_{x=l} \end{equation}
\begin{equation} \frac{\partial E(t)}{\partial t} =u_t( c^2u_x +bu)|_{x=l} + u_t(au - c^2u_x)|_{x=0} \end{equation}
Thus we need
\begin{equation} -\frac{\beta_1}{\beta_0} = \frac{b}{c^2} \ \ \ \rightarrow \ \ \ b = - \frac{\beta_1}{\beta_0}c^2 \end{equation}
\begin{equation} -\frac{\beta_1}{\beta_0} = -\frac{a}{c^2} \ \ \ \rightarrow \ \ \ a = \frac{\beta_1}{\beta_0}c^2 \end{equation}