We look for solutions such that $u_{tt}-u_{xx}=u(1-2u^2)=0$.
$u_{tt}-u_{xx}=0$ implies that $u(x,t) = f(x \pm t)$ for some function $f$.
$u(1-2u^2)=0$ implies that either $u = 0$ or $u = \pm \frac{1}{\sqrt 2}$.
A kink may be described by
\begin{equation}
u(x,t) = \left\{\begin{array}{21}
&\pm \frac{1}{\sqrt 2} \qquad & x \ge t\\
& 0 & x < t \end{array} \right.
\end{equation}
A soliton may be described by
\begin{equation}
u(x,t) = \left\{\begin{array}{21}
&\pm \frac{1}{\sqrt 2} \qquad & x = t\\
& 0 & x \neq t \end{array} \right.
\end{equation}