Yiyun is right. The simplest way:
$$\hat{f}(k)=\frac{1}{2\pi}\int _{-1}^1 (1-x^2)e^{-ikx}\,dx =
\frac{1}{2\pi} \int _0^1 (1-x^2)\bigl(e^{-ikx}+ e^{ikx}\bigr)\,dx=
\frac{1}{\pi} \int _0^1 (1-x^2)\cos (kx)\,dx$$
where we used that the function is even. Integrating by parts
$$\hat{f}(k)= \frac{1}{\pi k} (1-x^2)\sin (kx)\bigr|_0^{1} +
\frac{2}{\pi k} \int _0^1 x\sin (kx)\,dx$$
and the first term is $0$; integrating by parts again
$$\hat{f}(k)=
\bigl[-\frac{2}{\pi k^2} \cos (kx) + \frac{2}{\pi k^3} \sin (kx)\bigr]\bigr|_0^{1}=
-\frac{2}{\pi k^2} x\cos (k) + \frac{2}{\pi k^3} \sin (k)
$$