Check that function $u=x^3+6xt$ satisfies diffusion equation $u_t-u_{xx}=0$ and find
\begin{align*}
&M(T)= \max _{0\le x\le L,\ 0\le t\le T} u(x,t),\\[2pt]
&m(T)= \min _{0\le x\le L,\ 0\le t\le T} u(x,t).
\end{align*}
a. Where is the maximum value $u(x,t)=M(T,L)$ achieved?
b. Where is the minimum value $u(x,t)=m(T,L)$ achieved?
c. Verify the maximum and minimum principle.