c.
Suppose in general case, $yu x - 4xu y = f(x, y)$
Use polar angles, define
\begin{equation}
x=r\cos \theta \rightarrow x {\theta} = -r \sin\theta\\
y = 2r\sin \theta \rightarrow y{\theta} = 2r\cos\theta\\
yu x - 4xu y = -2u\theta.
\end{equation}
Since trajectories are closed (elliptic shape) $\theta \in (0, 2\pi)$ periodically.
Let $-2u \theta = g(\theta, r)$ then $u(\theta, r) = \int_0^{2\pi}\! g(\theta, r) d\theta$ but g needs to be 0 over the period, i.e $\int_0^{2\pi}\! g(\theta, r) d\theta = 0$.
In part a) \begin{equation}
y = -2u\theta\\
r\cos\theta = u
\end{equation} and integral over this period is 0. Thus solution for part a) is valid.
In part b) \begin{equation}
x^2 = -2u\theta\\
-\frac{1}{2}r^2 \frac{1}{2}(\cos 2\theta +1) = u\theta\\
u = -\frac{1}{8}r^2\sin 2\theta - \frac{1}{4}r^2\theta = u\\
\end{equation} the integral over period is not zero. Thus the periodic trajectories would not work.