Solve
\begin{align}
&(t^2+1)u_{tt}+tu_t-u_{xx}=0,\label{eq-1}\\[3pt]
&u|_{t=0}=0, \qquad u_t|_{t=0}=1.\label{eq-2}
\end{align}
Hint: Make a change of variables $x=\frac{1}{2}(\xi+\eta)$, $t=\sinh (\frac{1}{2}(\xi-\eta))$ and calculate $u_\xi$, $u_\eta$, $u_{\xi\eta}$.