Starting with
$$\begin{equation} \frac{\partial}{\partial x} \left[ T(x,t) \sin{\theta (x,t)} \right] = \rho (x) u_{tt} \end{equation}$$
where $\rho$ is the density and $T(x,t)$ is the tension force, we made the assumption that the vibrations are small, which gave us a linearized wave equation. I can see why some of the other assumptions (i.e. full flexibility, and no horizontal tension component) make sense, but I don't think I understand the insight behind this one.