$uu_{xy}=u_{x}u_{y}$
$(u_{x}u_{y})/uu_{x}=u_{xy}/u_{x}$
divide both side by$uu_{x}$ and get
$u_{y}/u=u_{xy}/u_{x}$
integrate with respect to y
$\ln{u}+f(x)=\ln{u_{x}}+g(x)$ enough to write one function of $x$
let g(x)-f(x)=n(x)
$u=u_{x}\times n(x)$
$u_{x}/u=n(x)$
$\ln{u}=N(x)+m(y)$
$u=N_{1}(x)\times m(y)$ "another $m(x)$"