Author Topic: Day Section Problem 1  (Read 7122 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Day Section Problem 1
« on: February 27, 2013, 07:46:14 PM »
Find the general solution of
\begin{equation*}
y'''-y''+y'-y=e^{-t}\sin(t).
\end{equation*}
« Last Edit: February 28, 2013, 11:01:34 AM by Victor Ivrii »

Changyu Li

  • Full Member
  • ***
  • Posts: 16
  • Karma: 10
    • View Profile
Re: Day Section Problem 1
« Reply #1 on: February 28, 2013, 11:29:34 AM »
$$
(r-1)(r^2+1) = 0 \\
r = 1, \pm i \\
y_h = c_1 e^t + c_2 e^{it} + c_3 e^{-it} \\
y_p = A e^{-t} \sin t + B e^{-t} \cos t \\
y_p' = e^{-t} \left(\left(A-B\right) \cos t - \left(A+B\right) \sin t \right) \\
y_p'' = -2 e^{-t} \left(A \cos t - B \sin t\right) \\
y_p''' = 2 e^{-t}\left(\left(A-B\right) \sin t + \left(A+B\right) \cos t \right) \\
A = 0, B = -\frac{1}{5} \\
y = c_1 e^t + c_2 e^{it} + c_3 e^{-it} -\frac{1}{5}e^{-t} \cos t
$$
« Last Edit: February 28, 2013, 11:46:14 AM by Victor Ivrii »

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Day Section Problem 1
« Reply #2 on: February 28, 2013, 11:48:52 AM »
Please do not increase font size; also in this and another Quiz 3 problem provide solution in the real form as combining complex exponents and $\sin$. $\cos$ creates an eclectic mess