a) Find the general solution of $y’’+2y’+17y=40e^x + 130 \sin(4x)$
First, for the complimentary solution, consider the homogeneous equation:
$y’’+2y’+17y=0$
and then, the characteristic equation is: $r^2+2r+17=0$,
$r \ = \ \frac{-2 \pm \sqrt{4-4 \times 17}}{2} \ = \ \frac{-2 \pm 8i}{2} \ = \ -1 \pm 4i$
These roots are a pair of complex conjugates in the form of $ \lambda \pm i \mu$,
so the differential equation has a general solution in the form of $y(x)=C_{1} e^{\lambda x} \cos(\mu x)+C_{2} e^{\lambda x} \sin(\mu x)$.
In this case, we have: $y_{c}(x)= e^{-x} (C_{1} \cdot \cos(4x) +C_{2} \cdot \sin(4x))$
Then, for the particular solution, by the method of undetermined coefficients,
suppose $y_{p}=A \cdot e^x$ satisfies the equation: $y’’+2y’+17y=40e^x$
Since, $y_{p}=A \cdot e^x$
$y’_{p}=A \cdot e^x$
$y’’_{p}=A \cdot e^x$
plug into the equation: $A \cdot e^x + 2A \cdot e^x + 17 A \cdot e^x = 20A \cdot e^x = 40e^x$
so, $A=2$
$\therefore y_{p}=2e^x$
For another particular solution, suppose $y_{p}=B \cdot \cos(4x) + C \cdot \sin(4x)$ satisfies the equation: $y’’+2y’+17y=130 \cdot \sin(4x)$
Since, $y_{p}=B \cdot \cos(4x) + C \cdot \sin(4x)$
$y’_{p}=-4B \cdot \sin(4x) + 4C \cdot \cos(4x)$
$y’’_{p}=-16B \cdot \cos(4x) -16 C \cdot \sin(4x)$
plug into the equation: $-16B \cdot \cos(4x) -16 C \cdot \sin(4x)-8B \cdot \sin(4x) + 8C \cdot \cos(4x) + 17B \cdot \cos(4x) + 17C \cdot \sin(4x) \\ =(B+8C) \cdot \cos(4x) + (C-8B) \cdot \sin(4x) \\ =130 \sin(4x)$
Then, $
\begin{cases}
C-8B=130 \\
B+8C=0
\end{cases}$
=> $\begin{cases}
C=2 \\
B=-16
\end{cases}$
$\therefore y_{p}=-16 \cdot \cos(4x) + 2 \cdot \sin(4x)$
So, the general solution is: $y(x)=e^{-x} (C_{1} \cdot \cos(4x) +C_{2} \cdot \sin(4x))+2e^x-16 \cdot \cos(4x) + 2 \cdot \sin(4x)$
b) when $y(0)=0, y’(0)=0$, and we have
$y’(x)=-e^{-x} (C_{1} \cdot \cos(4x) +C_{2} \cdot \sin(4x))+e^{-x} (-4C_{1} \cdot \sin(4x) +4C_{2} \cdot \cos(4x))+2e^x+64 \cdot \sin(4x) + 8 \cdot \cos(4x)$,
plug $y(0)=0$ into $y(x)$ equation, we get: $0=C_{1}+2-16$ => $C_{1}=14$,
then, plug $y’(0)=0$ into $y’(x)$ equation, we have:
$-C_{1}+4C_{2}+2+8=0 \\
-14+4C_{2}+10=0 \\
C_{2} = 1$
$\therefore y(x)=e^{-x} (-14\cdot \cos(4x) + \cdot \sin(4x))+2e^x-16 \cdot \cos(4x) + 2 \cdot \sin(4x)$