$$Let \, \, \, y=e^{rt}\, \,\, \, {y}'=re^{rt}\, \, \, {y}''=r^{2}e^{rt}\\\\Then\, \, \, \, \, \, r^{2}-6r+25=0\, \, \, \, \, \, \, \\\\\\\\\\r1=\frac{6+\sqrt{36-4\cdot 25\cdot 1}}{2}=3+4i\, \, \, \, \, \, \, r2=\frac{6-\sqrt{36-4\cdot 25\cdot 1}}{2}=3-4i\\\\Yc(x)=C1e^{3x}cos4x+C2e^{3x}sin4x\\\\\\\\\\Let\, \, Yp(x)=Ae^{3x}\, \, \,\, \, \, {y}'=3Ae^{3x}\, \, \,\, \, {y}''=9Ae^{3x}\\\\\\\\\\9Ae^{3x}-18Ae^{3x}+25Ae^{3x}=16e^{3x}\, \, \, \, \, \, 16Ae^{3x}=16e^{3x}\, \, \, \, \, 16A=16\, \,\, \, \, \, A=1\\\\\\\\\\Yp(x)=e^{3x}\\\\\\\\\\let \, \, \, \, Yq(x)=Asinx+Bcosx\, \, ,\, \, {y}'=Acosx-Bsinx\, \, ,\, \, {y}''=-Asinx-Bcosx\\\\\\\\\\-Asinx-Bcosx-6Acosx+6Bsinx+25Asinx+25Bcosx=102sinx\\\\\\\\\\(24A+6B)sinx+(24B-6A)cosx=102sinx\, \, \, \, \, \, 24A+6B=102\, \, \, \, 24B-6A=0\\\\A=4\, \, \, \, B=1\\\\\\\\\\Yq(x)=4sinx+cosx\\\\\\\\\\Y(x)=C1e^{3x}cos4x+C2e^{3x}sin4x+e^{3x}+4sinx+cosx\\\\y(0)=0\\\\\\because y(0)=C1+2=0\, \, \, \, C1=-2\\\\\\\\\\\because\, \, \, \, \, {y}'(0)=0\, \, \, \, {y}'(0)=3C1-0+0+4C2+3+4=0\, \, \, \, C2=-\frac{1}{4}\\\\\\\\\\Y(x)=-2e^{3x}cos4x-\frac{1}{4}e^{3x}sin4x+e^{3x}+4sinx+cosx$$