$$
M_{y}=1+6ye^{3x}
$$
$$
N_{x}=4ye^{2x}
$$
$M_{y} ≠N_{x} $,it is not exact
$$
R_{2} =\frac{ M_{y} -N_{x}}{N}=\frac{1+2ye^{2x} }{1+2ye^{2x}}=1
$$
$$
μ=e^{∫R_{2}dx} =e^{∫1 dx} =e^x
$$
Multiplying both sides by $\mu$, we get
$$
ye^x+3y^2e^{3x} +(e^x+2ye^{3x}) y^\prime=0
$$
$$
M_{y}^\prime=e^x+6ye^{3x}
$$
$$
N_{x}^\prime=e^x+6ye^{3x}
$$
$M_{y}^\prime=N_{x}^\prime$,it is exact
$$
∃φ(x,y) such that\ φ_{x} =M^\prime,φ_{y} =N^\prime
$$
$$
φ(x,y)=∫{M^\prime dx}=∫{ye^x+3y^{2}e^{3x}dx}=ye^x+y^{2}e^{3x} +h(y)
$$
$$
φ_{y} =e^x+2ye^{3x} +h(y)^\prime=e^x+2ye^{3x}
$$
Then $h(y)^\prime=0$
$$
$$
Hence h(y)=c
$$
φ(x,y)=ye^x+y^{2}e^{3x} =c
$$
Since y(0)=1
$$
1⋅e^0+1^2⋅e^0=2=c
$$
$$
φ(x,y)=ye^x+y^{2}e^{3x} =2
$$