After you got
\begin{equation*}
\ln\left( \sqrt{y^2 + C_1} + y \right) = \omega x + D
\end{equation*}
which could be rewritten as either
\begin{equation}
\ln\left( \sqrt{y^2 - C^2} + y \right) = \omega x + D \iff \ln\left( \sqrt{C^{-2}y^2 -1} + C^{-1}y \right) = \omega x + D_1
\label{eq-a}
\end{equation}
as $C_1=-C^2<0$ or
\begin{equation}
\ln\left( \sqrt{y^2 +C^2} + y \right) = \omega x + D \iff \ln\left(\sqrt{C^{-2}y^2 +1} + C^{-1}y \right) = \omega x + D_1
\label{eq-b}
\end{equation}
as $C_1=C^2>0$, you can extract $y= C\cosh(\omega x+D_1)$ and $y= C\sinh (\omega x+D_1)$ respectively. As $C=1$, $D=0$ we get $y_1=\cosh (\omega x)$ and $y_2=\sinh (\omega x)$ which provide another basis in the space of solutions (in comparison with $\bigl\{e^{\omega x}, e^{-\omega x}\bigr\}$). The same is true for any choice of $C$ and $D_1$ (just different basis).
See remark to a "sister problem" 3b.