You need to provide more details:
$M=3x^2y+2xy+y^3$, $N=x^2+y^2 \implies R:=\frac{\partial M}{\partial y}- \frac{\partial N}{\partial x}=3x^2+3y^2$ and $\frac{R}{N}=3$ is function of $x$ only, then we look for $\mu=\mu(x)$ s.t. $\mu' =3$.
Also after $\frac{\partial \psi}{\partial x}= e^{3x}(3x^2y+2xy+y^3)$ you need to provide transition to $\psi= \ldots$. In fact, much simpler to start from $\frac{\partial \psi}{\partial y}=e^{3x}(x^2+y^2) \implies \psi =e^{3x}(x^2y+ \frac{1}{3}y^3)+h(x)$ and then find $h'(x)=0\implies h(x)=C$.