Determine whether the equation is exact or not
$$(e^xsin(y)-2ysin(x))-(3x-e^xsin(y))y'=0$$
Let $$M(x,y)=e^xsin(y)-2ysin(x)$$ and let $$N(x,y)=-3x+e^xsin(y)$$
Then, $$M_y(x,y)=e^xcos(y)-2sin(x)$$ $$N_x(x,y)=-3+e^xsin(y)$$
Since $$M_y \neq N_x$$
so the given differential equation is not exact.