Since $ze^z-\frac{1}{4}=0\ {{\mathop{\Leftrightarrow}\limits_{}}}\ 4z-e^{-z}=0$
$\ f\left(z\right)=4z,\ s\left(z\right)=e^{-z},\ for\ 0<\left|z\right|<2.$
When $\left|z\right|=2,\ \left|s(z)\right|=\left|e^{-z}\right|=e^{-Re(z)}\le e^2\cong 7.387\dots <8$
And $\left|4z\right|=4\left|z\right|=4\bullet 2=8$
So $\left|s(z)\right|<\left|f(z)\right|,\ \ for\ \left|z\right|=2.$
Hence $g\left(z\right)=f\left(z\right)-s\left(z\right)=4z-e^{-z}$ has the same number of zeros
As $f\left(z\right)=4z\ \ in\ \left|z\right|<2$, this is 1 zero.
And when z = 0,$g\left(0\right)=4\bullet 0-e^0=-1\neq 0$
Hence z = 0 is not a zero of g(z).
We can conclude that $ze^z-\frac{1}{4}=0\ has\ 1\ zero\ in\ 0<\left|z\right|<2$.