First, try to find the eigenvalues with respect to the parameter
$A=\begin{bmatrix}
5&5\\
-5&-1\\
\end{bmatrix}$
$det(A-rI)=(5-r)(-1-r)+25=0$
$r^2-4r+20=0$
$r=\frac{4\pm\sqrt{-64}}{2}$
$r=2\pm4i$
Since they are complex conjugates
Then just use one of the eigenvector to find real solution
Use eigenvalue $r=3+4i$ to find its corresponding eigenvector
\begin{bmatrix}
3-4i&5\\
-5&-3-4i\\
\end{bmatrix}
The eigenvector is
$\begin{bmatrix}
5\\
4i-3
\end{bmatrix}$
$X=e^{2+4i}\begin{bmatrix}5\\4i-3\end{bmatrix}\cos4t+i\sin4t$
Rearrange this, we get $U=e^{2t}\begin{bmatrix}
\cos4t\\
-3cos4t-4\sin4t
\end{bmatrix}$
Also, $V=e^{2t}\begin{bmatrix}
5\sin4t\\
4\cos4t-3\sin4t
\end{bmatrix}$
And they are real valued solutions
Since -5<0, it is clockwise
Also real parts is 2>0, it is unstable spiral