$$\because e^z=\sum_{n=0}^{\infty}\frac{z^n}{n!}=1+z+\frac{z^2}{2}+\frac{z^3}{6}+\frac{z^4}{24}+\frac{z^5}{120}+\cdots$$
$$\begin{align}\therefore e^z-1&=(1+z+\frac{z^2}{2}+\frac{z^3}{6}+\frac{z^4}{24}+\frac{z^5}{120}+\cdots)-1\\&=z+\frac{z^2}{2}+\frac{z^3}{6}+\frac{z^4}{24}+\frac{z^5}{120}+\cdots \end{align}$$
Added omitted calculation of order of pole: (thanks Chunjing Zhang for pointing it out)
$$g(z)=\frac{1}{f(z)}=\frac{1}{\frac{1}{e^z-1}}=e^z-1\\g(z_0=0)=e^0-1=0\\g'(z)=e^z \Rightarrow g(z_0=0)=e^0=1\neq 0 \\$$
Thus the order of the pole of $f(z)$ at $z_0=0$ is $1$.
Hence we let $$\frac{1}{e^z-1}=a_{-1}z^{-1}+a_0+a_1z+a_2z^2+a_3z^3+a_4z^4+\cdots$$
$$\therefore(e^z-1)(\frac{1}{e^z-1})=1\\\therefore (z+\frac{z^2}{2}+\frac{z^3}{6}+\frac{z^4}{24}+\frac{z^5}{120}+\cdots)(a_{-1}z^{-1}+a_0+a_1z+a_2z^2+a_3z^3+a_4z^4+\cdots)=1$$
$$\Rightarrow a_{-1}+a_0z+a_1z^2+a_2z^3+\frac{1}{2}z+\frac{a_0}{2}z^2+\frac{a_1}{2}z^3+\frac{a_{-1}}{6}z^2+\frac{a_0}{6}z^3+\frac{a_{-1}}{24}z^3+\cdots=1$$
$$\therefore \begin{cases}a_{-1}=1\\a_0z+\frac{a_{-1}}{2}z=0 \Rightarrow a_0+\frac{a_{-1}}{2}=0 \Rightarrow a_0=-\frac{1}{2}\\\frac{a_{-1}}{6}z^2+\frac{a_0}{2}z^2+a_1z^2=0 \Rightarrow \frac{a_{-1}}{6}+\frac{a_0}{2}+a_1=0 \Rightarrow a_1=\frac{1}{12}\\ \frac{a_{-1}}{24}z^3+\frac{a_0}{6}z^3+\frac{a_1}{2}z^3+a_2z^3 \Rightarrow \frac{a_{-1}}{24}+\frac{a_0}{6}+\frac{a_1}{2}+a_2=0 \Rightarrow a_2=0\end{cases}$$
Therefore, the first four terms of the Laurent series:
$$\require{cancel} \cancel{1+\frac{1}{z}+(-\frac{1}{2})z^2+(0)z^3} \\ \text{Typo correction: } \frac{1}{z}-\frac{1}{2}+\frac{1}{12}z+(0)z^2$$
$$\\$$
$$\\$$
The residue of given function at $z_0$ is the coefficient of $(z-z_0)^{-1}$, which is $1$.
$$\\$$
$$\\$$
If $0(z^3)=0$ is not counted since its zero, we could have $a_3z^4+\frac{a_2}{2}z^4+\frac{a_1}{6}z^4+\frac{a_0}{24}z^4+\frac{a_{-1}}{120}z^4 \Rightarrow a_3=-\frac{1}{720}$
$\\$
Hence we have $\frac{1}{z}-\frac{1}{2}+\frac{1}{12}z+(0)z^2-\frac{1}{720}z^3$.