Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the following conditions:
- $\phi$ is continuous.
- $\phi'$ is continuous.
- $\phi(x) = 0$ for all $|x|>1$.
Consider the integral
$$
I_\lambda = \int_{-\infty}^{+\infty} \phi (x) \cos (\lambda x)\, dx.
$$
Prove that $|I_\lambda| \rightarrow 0$ when $\lambda \rightarrow \infty$.
Post after 22:30