Author Topic: Q3 TUT 0201  (Read 6777 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q3 TUT 0201
« on: October 12, 2018, 06:03:47 PM »
Find the Wronskian of the given pair of functions: $x$ and $xe^x$.

Pengyun Li

  • Full Member
  • ***
  • Posts: 20
  • Karma: 14
    • View Profile
Re: Q3 TUT 0201
« Reply #1 on: October 12, 2018, 06:07:28 PM »
$W(x, xe^x) = \left|\begin{matrix}x & xe^x \\ x' & (xe^x)'\end{matrix}\right|= \left|\begin{matrix}x & xe^x \\ 1 & x^2e^x+e^x\end{matrix}\right| = x(x^2e^x+e^x) - xe^x = x^3e^x$

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Q3 TUT 0201
« Reply #2 on: October 12, 2018, 07:47:31 PM »
Who taught you differentiate like this?!

Monika Dydynski

  • Full Member
  • ***
  • Posts: 26
  • Karma: 30
    • View Profile
Re: Q3 TUT 0201
« Reply #3 on: October 12, 2018, 07:56:39 PM »
(Pengyun's solution with corrected derivative of $xe^{x}$)

Find the Wronskian of the given pair of functions: $x$ and $xe^{x}$


$$W(x, xe^x) = \left|\begin{matrix}x & xe^{x} \\ x' & (xe^{x})'\end{matrix}\right|= \left|\begin{matrix}x & xe^{x} \\ 1 & xe^{x}+e^{x}\end{matrix}\right| = x^{2}e^{x}+xe^{x}-xe^{x}=x^{2}e^{x}.$$
« Last Edit: October 12, 2018, 08:02:07 PM by Monika Dydynski »