Consider problem:
\begin{align}
& \Delta u=0 &&\text{in }x^2+y^2<1, \ \ y>0,
\label{1}\\
& u|_{y=0}=x^2 &&\text{as }|x|<1,\label{2}\\
& u|_{x^2+y^2=1}=1,&& \text{as } y>0.
\label{3}
\end{align}
We want to separate variable $r$ and $\theta$ but the conditions as $\theta=0,\pi$ are inhomogeneous.
So we want to make them homogeneous. Find $v$, so that $u:=v$ satisfies (\ref{1}) and (\ref{2}) but not necessarily (\ref{3}), so $v$ is not unique. Can you suggest a candidate?
Then $w=u-v$ will satisfy (\ref{1}), homogeneous condition (\ref{2}), modified (\ref{3}). Find $w$ by separation, and then $u=v+w$.