For part(a)
Let
\begin{equation}
x(x-y+1)=0
\end{equation}
and
\begin{equation}
y(x-2)=0
\end{equation}
We will have all the three critical points
\begin{equation}
(x,y)=(0,0),(2,3) or (-1,0)
\end{equation}
For part(b)
\begin{equation}
F=x(x-y+1)
\end{equation}
\begin{equation}
G=y(x-2)
\end{equation}
Therefore, the Matrix $J$
\begin{equation}
J={
\left[\begin{array}{ccc}
2x-y+1 & -x \\
y & x-2
\end{array}
\right ]},
\end{equation}
At point(0,0), we have
\begin{equation}
J[0,0]={
\left[\begin{array}{ccc}
1 & 0 \\
0 & -2
\end{array}
\right ]},
\end{equation}
Eigenvalues are
\begin{equation}
\lambda_1=-2
\end{equation}
\begin{equation}
\lambda_2=1
\end{equation}
Therefore, (0,0) is a saddle point and thus unstable.
At point(2,3), we have
\begin{equation}
J[2,3]={
\left[\begin{array}{ccc}
2 & -2 \\
3 & 0
\end{array}
\right ]},
\end{equation}
\begin{equation}
\lambda_3=1+\sqrt{5}i
\end{equation}
\begin{equation}
\lambda_4=1-\sqrt{5}i
\end{equation}
Therefore, (2,3) is a spiral point and is unstable. The orientation is counterclockwise.
\begin{equation}
J[-1,0]={
\left[\begin{array}{ccc}
-1 & 1 \\
0 & -3
\end{array}
\right ]},
\end{equation}
\begin{equation}
\lambda_5=-1
\end{equation}
\begin{equation}
\lambda_6=-3
\end{equation}
Therefore, (-1,0) is a node and is asymptotically stable.