Taking partial fourier transform gives us:
$\hat{u}_{xx}-k^2\hat{u}=0$ giving us an ODE, which then can be solved: $\hat{u}=A(k)e^{-|k|x}+B(k)e^{|k|y}$
The second term is discarded since we want a finite solution, otherwise it would violate boundary condition 3.
So now we take $\hat{u}_{x} = -|k|A(k)e^{-|k|x} = 0 = \hat{h}$
What is $\hat{h}$
We know that $h(y) = -g'(y)$ and $g(y) = \frac{2}{y^2 + 1}$ with fourier transform of $e^{-|k|}$. We then use a property of the fourier transform, where $\hat{g} = ik\hat{f}$ implies = $g = f'(x)$
Thus:
$\hat{h} = -ik\hat{g}$
Thus
$ -|k|A(k) = -ik e^{-|k|}$, rearranging gives us:
$A(k) = \frac{ike^{-|k|}}{|k|} $
And $u(x,k) = \frac{ike^{-|k|}}{|k|}e^{-|k|x} $
We can put this in a fourier integral, and integrate to get u(x,y):
$u(x,y) = \int_{-\infty}^{\infty} \frac{ike^{-|k|}}{|k|}e^{-|k|x} e^{iky} dk$
Split into two integrals, to simplify the process:
$u(x,y) = \int_{0}^{\infty} i e^{-k(1+x - iy)} + \int_{-\infty}^{0} -ie^{k(1+x+iy)} = \frac{(i)((1+x - iy) - (1+x+iy))}{(1+x)^2 + y^2} = \frac{2y}{(1+x)^2 + y^2}$