The critical points would be when $x'=0$ and $y'=0$:
$$\begin{align}0=(1+x)\sin(y)\end{align}$$
$$\begin{align}0=1-x-\cos(y)\end{align}$$
From $(1)$, $\sin(y)$ would be $0$ when $y=n\pi$ where $n=0, 1, 2, 3,...$. Since there is a $\cos(y)$ in $(2)$, the previous equation can be split into two cases: $y=2n\pi$ where $n=0, 1, 2, 3,....$ and $y=n\pi$ where $n=1, 3, 5,....$. Then in case 1 $\cos(y)=1$ and in case 2 $cos(y)=-1$. Plugging both of these into $(2)$ gives the critical points:
$$\begin{align}(0, 2n\pi) \quad where \quad n=0, 1, 2, 3,...\end{align}$$
$$\begin{align}(2, n\pi) \quad where \quad n=1, 3, 5,...\end{align}$$
The Jacobian matrix would be:
$$\begin{align}J=\begin{pmatrix}F_{x}&F_{y}\\G_{x}&G_{y}\end{pmatrix}=\begin{pmatrix}\sin(y)&-\cos(y)(1+x)\\-1&\sin(y)\end{pmatrix}\end{align}$$
At $(0, 2n\pi)$:
$$\begin{align}J=\begin{pmatrix}0&1\\-1&0\end{pmatrix}\end{align}$$
This gives eigenvalues $r_{1}=i$ and $r_{2}=-i$. Since $r_{1}, r_{2}=\lambda\pm i\mu$ where $\lambda=0$ the nonlinear system would be an indeterminate center or spiral point.
At $(2, n\pi)$:
$$\begin{align}J=\begin{pmatrix}0&-3\\-1&0\end{pmatrix}\end{align}$$
The eigenvalues would be $r_{1}=\sqrt{3}$ and $r_{2}=-\sqrt{3}$. Since $r_{2}<0<r_{1}$ the nonlinear system would be an unstable saddle point.