No. you need really look coordinates:
\begin{gather*}
\frac{d\ }{dt} \frac{\partial L}{\partial \dot{q}_j}=\frac{\partial L}{\partial q}_j\implies \frac{d\ }{dt} (m\dot{q}_j+A_j(q))=\sum_k A_{k ,q_j} \dot{q}_k -V_{q_j}\\
\implies m\ddot{q}_j + \sum_k A_{j,q_k}\dot{q}_k +\sum_k A_{k ,q_j} \dot{q}_k -V_{q_j}\implies
m\ddot{q}_j =\sum_k F_{jk}(q) \dot{q}_k -V_{q_j}
\end{gather*}
with anti-symmetric matrix $\mathbf{F}$:
$$
F_{jk}=A_{k ,q_j}-A_{j,q_k}.
\tag{*}
$$
If $n=3$ such matrix is associated with a vector $\mathbf{B}$, so that $\mathbf{F}\mathbf{v}= \mathbf{v}\times \mathbf{B}$, and one can see easily, that for (*) $\mathbf{B}=\nabla \times \mathbf{A}$.
Comparing with Physics class we conclude that $\dot{\mathbf{q}}\times \mathbf{B}$ is a Lorentz force, $\mathbf{B}$ is a vector intensity of magnetic field, and $\mathbf{A}$ is a vector potential.
For $n>3$ we cannot reduce tensor intensity $\mathbf{F}$ to $\mathbf{B}$.