$
f(x) = e^{zx} $ for some $z \in \mathbb{C}
$
Part (a):
\begin{equation*}
a_0 = \frac{1}{l} \int_{-l}^{l} e^{zx}dx\\
= \frac{1}{zl} e^{zx}\big|_{-l}^{l}\\
= \frac{1}{zl}\big(e^{zl} - e^{-zl} \big)\\
\end{equation*}
\begin{equation*}
a_n = \frac{1}{2l} \int_{-l}^{l} e^{zx}\big( \exp{(\frac{in\pi x}{l})} + \exp{(-\frac{in\pi x}{l})} \big) dx \\
= \frac{1}{2l} \int_{-l}^{l} \exp{((z + \frac{in\pi }{l})x)} + \frac{1}{2l} \int_{-l}^{l} \exp{((z -\frac{in\pi }{l})x)} dx \\
= \frac{1}{2l} \frac{\exp{((z +\frac{in\pi}{l})x)}}{z +\frac{in\pi }{l}} \big|_{-l}^{l} + \frac{1}{2l} \frac{\exp{((z -\frac{in\pi }{l})x)}}{z -\frac{in\pi }{l}} \big|_{-l}^{l}\\
= \frac{1}{2l} \frac{e^{zl + in\pi }}{z +\frac{in\pi }{l}} - \frac{1}{2l} \frac{e^{-zl - in\pi }}{z +\frac{in\pi }{l}} + \frac{1}{2l} \frac{e^{zl - in\pi }}{z -\frac{in\pi }{l}} - \frac{1}{2l} \frac{e^{-zl + in\pi }}{z -\frac{in\pi }{l}}\\
=\frac{1}{2l}(-1)^n \big[e^{zl} - e^{-zl} \big]\big(\frac{1}{z +\frac{in\pi }{l}} + \frac{1}{z -\frac{in\pi }{l}} \big)\\
= \frac{(-1)^n}{l} \big(e^{zl} - e^{-zl} \big) \frac{z}{z^2 + (\frac{n \pi}{l})^2}\\
= \frac{(-1)^nzl \big(e^{zl} - e^{-zl} \big)}{(zl)^2 + (n \pi)^2 }
\end{equation*}
Similarly, for $b_n$:
\begin{equation*}
b_n = {\color{magenta}- }\frac{(-1)^n {\color{magenta}\pi }{\color{magenta}n } \big(e^{zl} - e^{-zl} \big)}{(zl)^2 + (n \pi)^2 }
\end{equation*}
Note the difference in magenta. Exceptional values are $lz = in\pi $ or $lz = -in\pi$.
\begin{equation}
e^{zx} = (e^{zl} - e^{-zl})\left[\frac{1}{2l} + \sum_{n=1}^{\infty} \frac{(-1)^nzl }{(zl)^2 + (n \pi)^2 } \cos{\frac{n\pi x}{l}} - \sum_{n=1}^{\infty} \frac{(-1)^n n\pi }{(zl)^2 + (n \pi)^2 } \sin{\frac{n\pi x}{l}} \right].
\end{equation}
Part (b):
\begin{equation*}
\cos{\omega x} = \frac{(e^{i\omega} - e^{-i\omega})}{2}
\end{equation*}
Let $z = i\omega$ or $z=-i\omega$. Using the result obtained in (1),
\begin{equation*}
\frac{1}{2}\left[ (e^{i\omega l} - e^{-i\omega l})\left(\frac{1}{2i \omega l} + \sum_{n=1}^{\infty} \frac{(-1)^n i\omega l }{-(\omega l)^2 + (n \pi)^2 } \cos{\frac{n\pi x}{l}} - \sum_{n=1}^{\infty} \frac{(-1)^n n\pi }{-(\omega l)^2 + (n \pi)^2 } \sin{\frac{n\pi x}{l}} \right) - \\(e^{i\omega l} - e^{-i\omega l})\left(\frac{1}{-2i \omega l} + -\sum_{n=1}^{\infty} \frac{(-1)^n i\omega l }{-(\omega l)^2 + (n \pi)^2 } \cos{\frac{n\pi x}{l}} - \sum_{n=1}^{\infty} \frac{(-1)^n n\pi }{-(\omega l)^2 + (n \pi)^2 } \sin{\frac{n\pi x}{l}} \right) \right]\\
= \sin{\omega l}\left(\frac{1}{\omega l} - \sum_{n=1}^{\infty} 2(-1)^n \frac{\omega l \cos{\frac{n\pi x}{l}}}{(n\pi)^2 -( \omega l)^2} \right).
\end{equation*}
Exceptional values here appear to be $(\omega l)^2 = (n \pi)^2$. At $\omega = 0$, we have an indeterminate form which is defined in the limit as $\omega$ approaches $0$.
Similarly, for $\sin{\omega x}$, we have
\begin{equation*}
\sin{\omega x} = -2\sin{\omega l} \sum_{n=1}^{\infty} 2(-1)^n \frac{n \pi \sin{\frac{n\pi x}{l}}}{(n\pi)^2 -( \omega l)^2}.
\end{equation*}
Part (c):
Just as in (b), we have $ \cosh{\eta x} = \frac{e^{\eta x} + e^{-\eta x}}{2}$ and can make the substitution $z = \eta $ or $z = -\eta$. Then
\begin{equation*}
\cosh{\eta x} = \sin{\eta l}\left(\frac{1}{\eta l} - \sum_{n=1}^{\infty} 2(-1)^n \frac{\eta l \cos{\frac{n\pi x}{l}}}{(n\pi)^2 +( \eta l)^2} \right)
\end{equation*}
And for $\sinh{\eta x}$, we have
\begin{equation*}
\sinh(\eta x) = \sinh{\eta l}\left(- 2 \sum_{n=1}^{\infty} (-1)^n \frac{n\pi \sin{\frac{n\pi x}{l}}}{(n\pi)^2 +( \eta l)^2} \right).
\end{equation*}