a) We have that given $ u_t + xtu_x = xte^{-t^2}{2} $
We use: $\frac{dx}{tx} = \frac{dt}{1} = \frac{du}{xte^{\frac{-t^2}{2}}} $
Integrating gives us the relation:
$ c + \frac{t^2}{2} = x $ WRONG. V.I.
This gives us the following characteristic curves:
b) Finding the general solution:
We plug in our value for x into:
$\frac{dt}{1} = \frac{du}{(\frac{t^3 e^{\frac{-t^2}{2}}+ Cte^{\frac{-t^2}{2}}} $|
Integration yields:
$$ u(x,t) = D +\frac{ Ce^{-t^2 / 2} - \frac{Ce^{-t^2 / 2} (t^2 + 1)}{3}}{4}$$
$$ D = \phi(C') = u - \frac{ Ce^{-t^2 / 2} - \frac{Ce^{-t^2 / 2} (t^2 + 1)}{3}}{4} $$
$$ u = \phi( x - \frac{t^2}{2}) + \frac{ ( x - \frac{t^2}{2})e^{-t^2 / 2} - \frac{( x - \frac{t^2}{2})e^{-t^2 / 2} (t^2 + 1)}{3}}{4} $$
Giving us a lovely general solution.
c) Solving (1) with the initial condition of $ u(x,0) = x $ :
$$ u(x,0) = \phi(x) + \frac{x}{3} - \frac{x}{12} = x$$
Therefore $\phi(x) = \frac{3/4} x $
Giving us a solution:
$$ u(x,t) = \frac{3( x - \frac{t^2}{2})}{4}+ \frac{ ( x - \frac{t^2}{2})e^{-t^2 / 2} - \frac{( x - \frac{t^2}{2})e^{-t^2 / 2} (t^2 + 1)}{3}}{4} $$