This solution can be split into two parts: for $y> 0 $ and $ y< 0 $, yielding
$$e^{-x}$$
$$e^{x} $$ respectively.
So u is split over those two regions. For the first one, we have
$$ u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_0^{\infty} \exp(\frac{-(x-y)^2) - 4yt}{4t}) dy $$
This calls for completing the square, then integrating as usual:
$$ u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_0^{\infty} \exp(\frac{-(x-y)^2) - 4yt}{4t}) $$
$$ u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_0^{\infty} \exp(\frac{-(y-(x-2t)^2)}{4t} exp(t-x) dy $$
$$ u(x,t) = \frac{exp(t-x)}{\sqrt{4\pi t}} \int_0^{\infty} \exp(\frac{-(y-(x-2t)^2)}{4t} $$
Now use the error function $ \erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-z^2} dz $ to answer:
let $ z = (y -(x-2t)) / \sqrt{4t} $ and $dz = \frac{dy}{\sqrt{4t}} $ giving us the integral:
$$ u(x,t) = \frac{\sqrt{4t} exp(t-x)}{\sqrt{4\pi t}}\int_{\frac{2t-x}{\sqrt{4t}}}^{\infty} e^{-z^2}dz $$
$$ u(x,t) = \frac{exp(t-x)}{2} erf(\infty) - \frac{\exp(t-x)}{2}\erf(\frac{2t-x}{\sqrt{4t}}) $$
Repeating these steps for the other region with $\phi(x) = e^x $ gives us:
$$ u(x,t) = -\frac{exp(t+x)}{2} \erf(-\infty) + \frac{\exp(t+x)}{2}erf(\frac{-2t-x}{\sqrt{4t}}) $$
\
Note that error function at $\pm \infty = \pm 1 $
Adding these together should give the solutions that Jingxuan posted.