fist take derivative with respect to t,$$\frac{1}{2}\int_0^L(2u_tu_{tt}+c^22u_xu_{xt}+2auu_t)dx+\frac{ac^2}{2}2u_t(0,t)u_{tt}(0,t)+\frac{bc^2}{2}2u_{t}(L,t)u_{tt}(L,t)$$ By the boundary condition given, $$u_{tt} = c^2u_{xx}-au $$ $$\Rightarrow \int_0^L(c^2u_tu_{xx}-auu_t+c^2u_xu_{xt}+auu_t)dx+ac^2u_t(0,t)u_{tt}(0,t)+bc^2u_{t}(L,t)u_{tt}(L,t)$$ $$\Rightarrow c^2\int_0^L(u_tu_{xx}+u_xu_{xt})dx+ac^2u_t(0,t)u_{tt}(0,t)+bc^2u_{t}(L,t)u_{tt}(L,t) $$ Since $$u_tu_x $$ take derivative with respect to x is equal to $$u_tu_{xx}+u_xu_{xt}$$ $$\Rightarrow c^2 u_t(L,t)u_x(L,t) - c^2u_t(0,t)u_x(0,t)+ac^2u_t(0,t)u_{tt}(0,t)+bc^2u_{t}(L,t)u_{tt}(L,t)$$ By another boundary condition $$u_x(0,t) = au_{tt}(0,t) $$ $$\Rightarrow c^2 u_t(L,t)u_x(L,t) - c^2au_t(0,t)u_{tt}(0,t)+ac^2u_t(0,t)u_{tt}(0,t)+bc^2u_{t}(L,t)u_{tt}(L,t)$$ And for the last boundary condition $$ -u_x(L,t)=bu_{tt}(L,t)$$$$\Rightarrow -c^2b u_t(L,t)u_{tt}(L,t) - c^2au_t(0,t)u_{tt}(0,t)+ac^2u_t(0,t)u_{tt}(0,t)+bc^2u_{t}(L,t)u_{tt}(L,t)$$ last step: $$-c^2b u_t(L,t)u_{tt}(L,t) +cb^2u_{t}(L,t)u_{tt}(L,t)- c^2au_t(0,t)u_{tt}(0,t)+ca^2u_t(0,t)u_{tt}(0,t)$$ All terms cancel ,so the equation equal to 0 and the energy does not depend on t.