Characteristic Equation :$$\frac{dt}{1} = \frac{dx}{3(t^2-1)} = \frac{du}{6t^2} $$
a). From $$\frac{dt}{1} = \frac{dx}{3(t^2-1)} \\ (3t^2-3)dt = dx \\ \Rightarrow t^3 -3t +D =x \\ \Rightarrow D = x -t^3 -3t $$ b).From :$$\frac{dt}{1} = \frac{du}{6t^2} \\ 6t^2dt = du \\ \Rightarrow 2t^3+A = u\\ \Rightarrow u(x,t) = 2t^3+\phi(x-t^3-3t)$$ c). $$ u(x,0) = \phi(x) = x \\ \Rightarrow u(x,t) = 2t^3+x-t^3-3t \\ \Rightarrow u(x,t) = t^3+x-3t$$