Characteristic equation:
$r^2+8r+25=0$
r = $-4 +3i, -4-3i$ (using quadratic equation)
Homogeneous solution:
$y_c(t) = c_1e^{-4t}cos(3t) + c_2e^{-4t}sin(3t)$
Particular solutions:
First Particular:
$Y = Ae^{-4t}$
$Y' = -4Ae^{-4t}$
$Y'' = 16Ae^{-4t}$
$A(16+8(-4)+25)=9$
$9A=9$
$A=1$
Second Particular:
$Y = Asin(3t)+Bcos(3t)$
$Y' = 3Acos(3t)-3Bsin(3t)$
$Y'' = -9Asin(3t)-9Bcos(3t)$
Plug into the given equation:
sines:
$-9A+8(-3B)+25A = 104$
$16A-24B=104$
$2A-3B=13$
cosines:
$-9B+8(3A)+25B = 0$
$16B+24A=0$
$2B+3A=0$
==> $A=2, B=-3$
General solution:
$y(t) = c_1e^{-4t}cos(3t) + c_2e^{-4t}sin(3t) + e^{-4t} + 2sin(3t) -3cos(3t)$