Consider Laplace equation in the half-strip
\begin{align}
&&&u_{xx} +u_{yy}=0 \qquad y>0, \ 0 <x< \pi/2 \label{5-1}\\
&\text{with the boundary conditions}\notag\\
&&&u (0,y)=0,\qquad u(\pi/2,y)=0,\label{5-2}\\
&&&u(x,0)=g(x)\label{5-3}
\end{align}
with $g(x)=\cos(x)$\; and condition $\max |u|<\infty$.
(a) Write the associated eigenvalue problem.
(b) Find all eigenvalues and corresponding eigenfunctions.
(c) Write the solution in the form of a series expansion.