Problem 1.
http://www.math.toronto.edu/courses/apm346h1/20159/PDE-textbook/Chapter6/S6.P.html(a) We are asked to find the solutions of $\Delta u = u_{xx} + u_{yy} + u_{zz} = k^2u$ that depend only on $r$. So, we must turn this into spherical coordinates. By the methods of the textbook section 6.3.2, we arrive at:
\begin{equation}
\Delta u(r, \phi{}, \theta{}) = u_{rr} + \frac{2u_r}{r} + \frac{u_{\phi{} \phi{}}}{r^2} + \frac{\cot(\phi{})u_{\phi}}{r^2} + \frac{u_{\theta{} \theta{}}}{\sin^2(\phi{})r^2} = k^2u
\end{equation}
Note that these are defined as in the textbook: $r$ is the radius, $\phi$ is the latitude, and $\theta$ is the longitude.
Now, the problem asks for a solution that depends only on r. In this case, any derivatives with respect to the other variables should be zero. So canceling these terms, we can write the equation as:
\begin{equation}
\Delta u(r) = u_{rr} + \frac{2}{r}u_r = k^2u
\end{equation}
Now we can make use of the hint provided in the problem, namely that we should make the substitution $u(r) = \frac{v(r)}{r}$. Then $u''(r)$ and $u'(r)$ are:
\begin{equation}
\begin{cases}
u_r = \frac{v'(r)}{r} - \frac{v(r)}{r^2} \\
u_{rr} = \frac{v''(r)}{r} - 2\frac{v'(r)}{r^2} + 2\frac{v}{r^3}
\end{cases}
\end{equation}
Now plugging these all into the problem, we have:
\begin{equation}
\frac{v''(r)}{r} - 2\frac{v'(r)}{r^2} + 2\frac{v}{r^3} + \frac{2}{r} \Big( \frac{v'(r)}{r} - \frac{v(r)}{r^2} \Big) = k^2\frac{v(r)}{r} \longrightarrow
\end{equation}
\begin{equation}
\frac{v''(r)}{r} - 2\frac{v'(r)}{r^2} + 2\frac{v}{r^3} + 2\frac{v'(r)}{r^2} - 2\frac{v(r)}{r^3} = k^2\frac{v(r)}{r} \longrightarrow
\end{equation}
\begin{equation}
\frac{v''(r)}{r} = k^2\frac{v(r)}{r} \longrightarrow
\end{equation}
\begin{equation}
v''(r) = k^2v
\end{equation}
We now have a simple ODE which can be solved by the usual methods. Recall that $k>0$ as defined in the problem. The solution to the ODE is:
\begin{equation}
v(r) = Ae^{kr} + Be^{-kr}
\end{equation}
Now we put this back in terms of $u(r)$, where we recall that $u(r) = \frac{v(r)}{r}$. So:
\begin{equation}
u(r) = Ae^{kr}r^{-1} + Be^{-kr}r^{-1}
\end{equation}