For part (d), given $g(x) = xe^{-\alpha |x|}\cos(\beta x)$, where $f(x) = e^{-\alpha |x|}\cos(\beta x)$
By theorem $\hat{g}(\omega) = i \hat{f'}(\omega)$
By part (b), we have $\hat{f}(\omega) = \frac{1}{2}[\frac{\alpha}{\pi(\alpha^2+(\omega - \beta)^2)}+\frac{\alpha}{\pi(\alpha^2+(\omega + \beta)^2)}]$
Then, $$ \hat{f'}(\omega) = -\frac{\alpha}{\pi}[\frac{(\omega - \beta)}{(\alpha^2 + (\omega - \beta)^2)^2} + \frac{(\omega + \beta)}{(\alpha^2 + (\omega + \beta)^2)^2}]$$
Hence, $$ \hat{g}(\omega) = -\frac{i\alpha}{\pi}[\frac{(\omega - \beta)}{(\alpha^2 + (\omega - \beta)^2)^2} + \frac{(\omega + \beta)}{(\alpha^2 + (\omega + \beta)^2)^2}]$$
Similarly, for $g(x) = xe^{-\alpha |x|}\sin(\beta x)$, where $f(x) = e^{-\alpha |x|}\sin(\beta x)$
By part (b), we have $\hat{f}(\omega) = \frac{1}{2i}[\frac{\alpha}{\pi(\alpha^2+(\omega - \beta)^2)} - \frac{\alpha}{\pi(\alpha^2+(\omega + \beta)^2)}]$
Then, $$ \hat{f'}(\omega) = -\frac{\alpha}{i\pi}[\frac{(\omega - \beta)}{(\alpha^2 + (\omega - \beta)^2)^2} - \frac{(\omega + \beta)}{(\alpha^2 + (\omega + \beta)^2)^2}]$$
Hence, $$ \hat{g}(\omega) = -\frac{\alpha}{\pi}[\frac{(\omega - \beta)}{(\alpha^2 + (\omega - \beta)^2)^2} - \frac{(\omega + \beta)}{(\alpha^2 + (\omega + \beta)^2)^2}]$$