Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
APM346-2015F
»
APM346--Tests
»
Test 1
»
TT1-P3
« previous
next »
Print
Pages: [
1
]
Author
Topic: TT1-P3 (Read 5322 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
TT1-P3
«
on:
October 21, 2015, 08:49:38 PM »
Find solution to
\begin{align}
&u_{tt}-4u_{xx}=0, && t>0, \ x>0,\label{eq-3-1}\\[2pt]
&u|_{t=0}=e^{-x}, && x>0,\label{eq-3-2}\\[2pt]
&u_t|_{t=0}=6e^{-x}, && x>0,\label{eq-3-3}\\[2pt]
&u|_{x=0}= e^{-2t}, &&t>0.\label{eq-3-4}
\end{align}
Logged
Zaihao Zhou
Full Member
Posts: 29
Karma: 0
Re: TT1-P3
«
Reply #1 on:
October 21, 2015, 09:23:59 PM »
\begin{equation} u(x,t) = \phi (x+2t) + \psi (x-2t) \end{equation}
where $\phi (x) = -e^{-x}$ and $\psi (x) = 2e^{-x} $ when $ x > 2t$. When $ 0< x < 2t$, $ \psi (x) = 2e^x$
So for $ x > 2t$: \begin{equation} u(x,t) = -e^{-x-2t} + 2e^{2t-x} \end{equation}
For $ 0 < x < 2t$: \begin{equation} u(x,t) = -e^{-x-2t} + 2e^{x-2t} \end{equation}
Logged
Bruce Wu
Sr. Member
Posts: 57
Karma: 0
Re: TT1-P3
«
Reply #2 on:
October 21, 2015, 09:50:24 PM »
I believe that for $0<x<2t$ the solution is actually \begin{equation}\large
u(x,t)=e^{x-2t}-e^{-x-2t}+e^{-2t+x}\end{equation}
«
Last Edit: October 21, 2015, 09:54:19 PM by Fei Fan Wu
»
Logged
Zaihao Zhou
Full Member
Posts: 29
Karma: 0
Re: TT1-P3
«
Reply #3 on:
October 21, 2015, 10:08:44 PM »
For $ 0 < x < 2t$:
\begin{equation} \phi (2t) + \psi (-2t) = e^{-2t} \end{equation}
Let $ x = -2t$
\begin{equation} \phi (-x) + \psi (x) = e^{x} \end{equation}
\begin{equation} \psi (x) = -\phi (-x) + e^{x} \end{equation}
Here $ \phi(-x) = -e^x$. So
\begin{equation} \psi (x) = e^x + e^{x} = 2e^x \ \ \ \ \ \ x < 0 \end{equation}
\begin{equation} u(x,t) = \phi (x+2t) + \psi (x-2t) = -e^{-x-2t} + 2e^{x-2t} \end{equation}
Please correct me if I'm wrong
Logged
Bruce Wu
Sr. Member
Posts: 57
Karma: 0
Re: TT1-P3
«
Reply #4 on:
October 21, 2015, 10:23:52 PM »
Here we have an inhomogeneous Dirichlet boundary condition. Using
http://www.math.toronto.edu/courses/apm346h1/20159/PDE-textbook/Chapter2/S2.6.html#mjx-eqn-eq-2.6.10
I obtained the solution I gave above
Logged
Bruce Wu
Sr. Member
Posts: 57
Karma: 0
Re: TT1-P3
«
Reply #5 on:
October 21, 2015, 10:43:19 PM »
Ah, I see. Our expressions are actually equivalent. I have just forgotten to collect the $e^{x-2t}$ terms. My apologies
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
APM346-2015F
»
APM346--Tests
»
Test 1
»
TT1-P3