a-b. Separation of variables brings $X''+\lambda X=0$, $X(0)=X(3\pi)=0$ and then $\lambda_n= -n^2/9$, $X_n=\sin (nx/3)$.
c. We know that $\sin (\pi nx/l)$ orthogonal on $[0,l]$.
d. From separation of variables we also have $T'/T=-k\lambda$ and then $T_n=A_n e^{-k n^2t/9}$. Then
\begin{equation}
u(x,t)= \sum_{n=1}^\infty A_n e^{-k n^2t/9} \sin (nx/3),
\label{K}
\end{equation}
e. Then $u(x,0)=\sum_{n=1}^\infty A_n \sin (nx/3)=|\cos (x)|$. We need to decompose $|\cos (x)|$ into series. Then
\begin{equation}
A_n = \frac{2}{3\pi} \int_0^{3\pi} |\cos (x)|\sin \bigl(\frac{nx}{3}\bigr)\,dx
\label{L}
\end{equation}
which does not look very easy since $\cos (x)$ changes sign several times on $(0,3\pi)$. Because those who did not make calculations got no reduction.
But there is still an easy way to calculate $A_n$. Since $|\cos (x)$ is $\pi$-periodic
\begin{gather*}
A_{n} = \frac{2}{3\pi} \int_{\pi}^{2\pi} |\cos (x)|\bigl[ \sin \bigl(\frac{n(x-\pi)}{3}\bigr)+
\sin \bigl(\frac{nx}{3}\bigr) + \sin \bigl(\frac{n(x+\pi)}{3}\bigr)\bigr]\,dx=\\
\frac{2}{3\pi} \int_{\pi}^{2\pi} |\cos (x)| \sin \bigl(\frac{nx}{3}\bigr)
\bigl[ 2\cos \bigl(\frac{n\pi}{3}\bigr)+1\bigr) \bigr]\,dx
\end{gather*}
where we used formula for $\sin(\alpha)+\sin(\beta)$. Observe that $|\cos (x)|$ is even with respect to $\frac{3\pi}{2}$ and $\sin (n x/3)$ is even as $n$ is odd and odd as $n$ is even. Then $A_{2m}=0$ and
\begin{equation*}
A_{2m+1} =
\frac{2}{3\pi} \bigl[ 2\cos \bigl(\frac{(2m+1)\pi}{3}\bigr)+1\bigr) \bigr]
\int_{\frac{3\pi}{2}}^{2\pi} \bigl[ \sin\bigl( \frac{(m+2)x}{3} \bigr) + \sin\bigl( \frac{(m-1)x}{3} \bigr) \bigr]\,dx
\end{equation*}
where we used formula for $2\sin(\alpha)\cos (\beta)$. This integral is easy.