Justify examples 6--7 of Lecture 11: Consider eignevalue problem with Robin boundary conditions
\begin{align}
& X'' +\lambda X=0 && 0<x<l,\label{eq-4.1}\\[3pt]
& X'(0)=\alpha X(0), \qquad X'(l)=-\beta X(l),\label{eq-4.2}
\end{align}
with $\alpha, \beta \in \mathbb{R}$.
a. Prove that positive eigenvalues are $\lambda_n=\omega_n^2$ and the corresponding eigenfunctions are $X_n$ where $\omega_n\>0$ are roots of
\begin{align} & \tan (\omega l)=
\frac{(\alpha+\beta)\omega}{\omega^2-\alpha\beta};\label{eq-4.3}\\
& X_n= \omega_n \cos (\omega_n x) +\alpha \sin (\omega_n x);
\label{eq-4.4}
\end{align}
with $n=1,2,\ldots$. Solve this equation graphically.
b. Prove that negative eigenvalues if there are any are $\lambda_n=-\gamma_n^2$ and the corresponding eigenfunctions are $Y_n$ where $\gamma_n\>0$ are roots of
\begin{align}
& \tanh (\gamma l )= {-\frac{(\alpha + \beta)\gamma }
{\gamma ^2 + \alpha\beta}},\label{eq-4.5}\\
& Y_n(x) = \gamma_n \cosh (\gamma_n x) + \alpha \sinh (\gamma_n x).
\label{eq-4.6}
\end{align}
Solve this equation graphically.
c. To investigate how many negative eigenvalues are, consider the threshold case of eigenvalue $\lambda=0$: then $X=cx+d$ and plugging into b.c. we have $c=\alpha d$ and $c=-\beta (d+lc)$; this system has non-trivial solution $(c,d)\ne 0$ iff $\alpha+\beta+\alpha \beta l =0$. This hyperbola divides $(\alpha,\beta)$-plane into three zones.
d. Prove that eigenfunctions corresponding to different eigenvalues are orthogonal:
\begin{equation}
\int_0^l X_n(x)X_m (x)\,dx =0\qquad\text{as } \lambda_n\ne \lambda_m
\label{eq-4.7}
\end{equation}
where we consider now all eigenfunctions (no matter corresponding to positive or negative eigenvalues).
e. Bonus Prove that eigenvalues are simple, i.e. all eigenfunctions corresponding to the same eigenvalue are proportional.