By method of continuation combined with D'Alembert formula solve each of
the following four problems (a)--(d).
a. \begin{equation}
\left\{\begin{aligned}
&u_{tt}-9u_{xx}=0, \qquad &&x>0,\\
&u|_{t=0}=0, \qquad &&x>0,\\
&u_t|_{t=0}=\cos (x), \qquad &&x>0,\\
&u|_{x=0}=0, \qquad &&t>0.
\end{aligned}\right.
\label{eq-HA2.7}
\end{equation}
b. \begin{equation}
\left\{\begin{aligned}
&u_{tt}-9u_{xx}=0, \qquad &&x>0,\\
&u|_{t=0}=0, \qquad &&x>0,\\\\
&u_t|_{t=0}=\cos (x), \qquad &&x>0,\\
&u_x|_{x=0}=0, \qquad &&t>0.
\end{aligned}\right.
\label{eq-HA2.8}
\end{equation}
c. \begin{equation}
\left\{\begin{aligned}
&u_{tt}-9u_{xx}=0, \qquad &&x>0,\\
&u|_{t=0}=0, \qquad &&x>0,\\
&u_t|_{t=0}=\sin(x), \qquad &&x>0,\\
&u|_{x=0}=0, \qquad &&t>0. \end{aligned}\right.
\label{eq-HA2.9}
\end{equation}
d. \begin{equation}
\left\{\begin{aligned}
&u_{tt}-9u_{xx}=0, \qquad &&x>0,\\
&u|_{t=0}=0, \qquad &&x>0,\\
&u_t|_{t=0}=\sin(x), \qquad &&x>0,\\
&u_x|_{x=0}=0, \qquad &&t>0.
\end{aligned}\right.
\label{eq-HA2.10}
\end{equation}