Author Topic: Web Bonus Problem 6  (Read 2384 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Web Bonus Problem 6
« on: February 06, 2015, 09:11:06 AM »
Consider $LX=-X''$ on $\mathbb{R}^+:=\{x:\, x>0\}$ with boundary condition $X'(0)-\alpha X(0)=0$.

a. Find values $\alpha\in \mathbb{R}$ such that there are eigenfunctions. Find corresponding eigenvalues.

b. Find generalized eigenfunctions and the corresponding continuous spectrum.

Remark.

a. Eigenfunctions must belong to $L^2(\mathbb{R}^+)$, that means $\int_0^\infty  |X(x)|^2\,dx <\infty$.

b. Generalized eigenfunctions cannot grow exponentially as $x\to +\infty$ but they do not belong $L^2(\mathbb{R}^+)$.