Observe that the equation is an Euler equation, then we let
\begin{equation*} t = \log x
\end{equation*}
Then the equation becomes
\begin{equation*}
y'' - y' - 6y =10 e^{-2t}- 6
\end{equation*}
It is the same ODE from
question 3 .
Use the particular solution from 3 i.e
\begin{equation*}
y=-2te^{-2t} + 1
\end{equation*}
Plug in $x$ back, we have
\begin{equation*} y=\frac{-2\log x}{x^2} + 1. \end{equation*}