(b) Finding the critical points means solving:
\begin{equation*}
0 = x(1.5 - 0.5x - y),
0 = y(2 - x - 1.125y)
\end{equation*}
There are four possibilities then,
\begin{equation*}
(x,y) = (0,0),(0,2),(3,0),(\frac{4}{5},\frac{11}{10})
\end{equation*}
(c) The Jacobian for this question is then,
\begin{equation*}
J = \left( \begin{array}{cc} 1.5-1.5x-y & -x \\ -1.125y & 2-2y-1.125x \end{array} \right).
\end{equation*}
For the point (0,0):
\begin{equation*}
J= \left( \begin{array}{cc} 1.5 & 0 \\ 0 & 2 \end{array} \right).
\end{equation*}
So,
\begin{equation*}
\lambda_{1} = 1.5, \lambda_{2} = 2 \\
\xi_{1} = \left(\begin{array}{cc} 1 \\ 0 \end{array} \right), \xi_{2} = \left(\begin{array}{cc} 0 \\ 1 \end{array} \right)
\end{equation*}
and thus, (0,0) represents a unstable node. For (0,2),
\begin{equation*}
J= \left( \begin{array}{cc} -0.5 & 0 \\ -2.25 & -2 \end{array} \right).
\end{equation*}
So,
\begin{equation*}
\lambda_{1} = -0.5, \lambda_{2} = -2 \\
\xi_{1} = \left(\begin{array}{cc} 3 \\ 1 \end{array} \right), \xi_{2} = \left(\begin{array}{cc} 0 \\ 1 \end{array} \right)
\end{equation*}
and thus (0,2) its a node which is asymptotically stable. For (3,0),
\begin{equation*}
J= \left( \begin{array}{cc} -1.5 & -3 \\ 0 & -1.375 \end{array} \right).
\end{equation*}
So,
\begin{equation*}
\lambda_{1} = -1.5, \lambda_{2} = -1.375 \\
\xi_{1} = \left(\begin{array}{cc} 1 \\ 0 \end{array} \right), \xi_{2} = \left(\begin{array}{cc} 24 \\ -1 \end{array} \right)
\end{equation*}
and thus (3,0) is also an asymptotically stable node. Finally, for (4/5,11/10),
\begin{equation*}
J= \left( \begin{array}{cc} -\frac{2}{5} & -\frac{4}{5} \\ -\frac{99}{80} & -\frac{11}{10} \end{array} \right).
\end{equation*}
So,
\begin{equation*}
\lambda^{2} + \frac{3}{2}\lambda - \frac{11}{20} = 0 \\
\lambda_{1} = -1.8, \lambda_{2} = 0.3 \\
\xi_{1} = \left(\begin{array}{cc} 1 \\ -1.4 \end{array} \right), \xi_{2} = \left(\begin{array}{cc} 1.57 \\ -1 \end{array} \right)
\end{equation*}
and thus (4/5,11/10) is a saddle point (unstable).